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Abstract The molecular similarity problem is addressed within the recently
proposed information-theoretic (IT) approach to molecular electronic structure. In this
Communication Theory of the chemical bond the direct criteria of the overall similar-
ity are formulated in terms of the conditional-entropy (average noise, IT-covalency)
and mutual-information (information flow, IT-ionicity) descriptors of the compared
molecular communication systems, and the associated variational principles for their
maximum entropy/information resemblance are formulated and discussed. Implica-
tions for molecular similarity from the parallel and sequential arrangements of the
compared information channels of molecules or their fragments are investigated and
tested on illustrative π -electron systems.

Keywords Bond covalency/ionicity · Chemical bonding · Communication theory ·
Information theory · Molecular communication systems · Parallel information
channels · Similarity of molecules · Sequential information cascades ·
Theory of chemical bonds

1 Introduction

The concepts and methods of Information Theory (IT) [1–4] have been recently
applied to diverse problems in the theory of electronic structure [5]. For example,
the “stockholder” principle of Hirshfeld [6], for the local partition of the molecular
electron density into pieces attributed to Atoms-in-Molecules (AIM), has been justified
and extended [5,7–12], the entropy-displacement and information-distance densities
have been used as novel diagnostic tools for exploring chemical bonds and electron
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localization in molecular systems [5,6,13–15], the integral information-distance has
been applied to quantify the Hammond similarity postulate of the theory of chemical
reactivity [16], and the local, thermodynamic-like description of the electron equilibria
in molecules has been proposed [17].

Within this IT-perspective on molecular electronic structure the AIM-resolved com-
munication theory of the chemical bond has been developed for both the molecular
system as a whole and its constituent fragments [5,18–26]. Its formulations in the
orbital and local descriptions have also been proposed [27–31]. In this approach the
entropy/information indices of the overall chemical bond multiplicity and its cova-
lent/ionic composition reflect the promotion of the constituent free-atoms of the system
promolecule [6] to their respective valence-states in the molecule, due to the presence
of the remaining AIM. In the communication theory a molecule is interpreted as an
information system, in which the molecular or “promolecular” electron probabilities
are propagated (“scattered”) via the network of chemical bonds connecting the sys-
tem constituent atoms. The bond entropy-covalency (conditional entropy) descriptor
of such a molecular channel measures its average communication “noise”, i.e., the
extra uncertainty in the distribution of the system valence electrons due to their delo-
calization via the network of the occupied Molecular Orbitals (MO). Accordingly,
the overall information-ionicity (mutual information) index of all bonds in the system
under consideration measures the amount of information flowing through the molec-
ular information network, i.e., a fraction of the input information content which has
survived the dissipation due to the bond covalency, i.e., due to the channel communi-
cation noise.

This communication analysis thus generates the information-flow perspective on
classical issues in the theory of molecular electronic structure, dealing with the entro-
pic origin and composition of chemical bonds. One now probes the bond covalency and
ionicity through the information scattering in the molecular information system: the
overall IT-covalency reflects the extra “noise” in the molecular communication chan-
nel due to the bond-formation process. It effectively lowers the information content
of the final (output) probabilities of AIM, compared to the initial (input) probabilities,
which measures the system overall IT-ionicity. In other words, the covalent compo-
nent in the communication theory reflects the delocalization aspect of the valence
electrons, via the system of chemical bonds generated by the occupied MO, while the
ionic component describes the localization facet of the molecular electronic structure.
These complementary entropy/information indices supplement the bond-order mea-
sures designed in the MO theory, e.g., [32–40]. The IT description gives a transparent
account of the competition between the covalent and ionic components of the chemi-
cal bond, which also accords with the chemical intuitive expectations and predictions
from the MO theory [5]. In several model systems the IT indices of chemical bonds
have been shown to give rise to the dichotomous covalent and ionic contributions [21],
which conserve the overall bond-order [10].

In chemistry one often compares the bonding patterns of molecules or their frag-
ments and alternative, hypothetical or real, bond distributions of the given molecu-
lar system, e.g., the valence structures of the Valence-Bond (VB) theory [41] or the
electron configurations in the Configuration Interaction (CI) approach to the electron
correlation problem. Therefore, it is of interest to examine how such a comparison can
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be effected in the communication theory of chemical bonds. Several specific ques-
tions then naturally arise in this context. For example, can the entropy/information
concepts and tools of IT be used to facilitate such “similarity” comparisons of molec-
ular systems and their hypothetical VB-structures? Does the overall closeness of the
IT-ionicity (or IT-covalency) descriptors of the two compared communication systems
indeed imply the similarity of their information systems and chemical behavior? Can
the consecutive and/or parallel connections [4,30] of the compared channels be used
to diagnose their information and chemical resemblance? It is the main purpose of this
work to address such and related issues, and to develop the relevant criteria for such
applications of the communication theory in chemistry. Unless specified otherwise,
in what follows the entropic quantities are measured, in bits, which correspond to the
base 2 of the logarithmic measure of information [2]; the bold symbol X denotes the
square or rectangular matrix, the bold-italic X stands for the row vector, while italic
X corresponds to the scalar quantity.

2 Overall criteria of molecular information similarity

A comparison of the bonding structure, reflecting the bond connectivity pattern in
molecular systems, can be carried out on both the global and local (diatom-resolved)
levels. The former emphasizes the overall indicators of all bonds in two systems and
their summary composition, while the latter focuses on distributions of bonds between
the specified pairs of atoms. In this work we adopt the global IT approach, by exam-
ining the overall IT descriptors of the compared molecular communication systems.

Let us first briefly comment on the simplest, one-electron approach, in which one
explores the information similarity in the probabilities of finding an electron on the
systems constituent AIM. For the common set of atomic events in both systems,
i = 1, 2, . . . , N , the information similarity of two probability vectors p = {pi } and
q = {q j }, in the two compared molecular systems, respectively, is directly reflected
by the information-distance index [relative (or cross) entropy, missing information,
entropy deficiency] of Kullback and Leibler [3],

�S(p|q) =
∑

i
pi log(pi/qi ), (1)

which has been successfully used in justifying the stockholder-rule of partitioning elec-
tron distributions [5–12], probing the electron distributions in molecules [5,13,14], and
quantifying the Hammond postulate [16]. However, this one-electron concept is not
discriminatory enough in many chemical applications comparing the bonding patterns
of molecules and their fragments, since the origins of the chemical-bond phenomenon
are rooted in the two-electron probabilities of simultaneously finding two electrons
on specified atoms, P = {Pi, j ≡ P(ai , b j )}. They are embodied in the conditional
probabilities of finding one electron on atom j , when the other electron is known to
have been located on aton j, d = {d( j |i) = Pi, j/pi }, where pi = ∑

j Pi, j ≡ P(ai ),
which determine the communication networks of molecular information channels
[5–31] (Fig. 1), and implied by the valence structures of VB theory [5,41]. Indeed,
the criterion of Eq. 1 fails completely in the Hückel theory, when comparing the
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A   B 
    x  a1     1−ω b1          x(1−ω) + (1−x)ω ≡ 1−z             I  a)

b)

c)

d)

  I 

(SBC)
ω

                          A →→ B
ω

1−x  a2      1−ω b2                 xω + (1−x)(1−ω) ≡ z
S I = − ω logω − (1−ω) log(1−ω)≡ H(ω) = S I (B|A)            I I = H(z) − H(ω) = I I(A:B)
---------------------------------------------------------------------------------------------------------------------

x(1−ω)/(1−z)
    x  a1            b1         1−z (SBC)

            (1−x)ω /(1−z)
               B → A

          xω /z
1−x  a2        b2                 z
                                  (1−x)(1−ω)/z
S I = H(ω) + H(x) − H(z) = S I(A|B)                                   I I = H(z) − H(ω) = I I(B:A)
---------------------------------------------------------------------------------------------------------------------

    y  a1     1−ε b1         1−ε              II 

  II 

(NBC) 
ε

               A → B
1−ε

1−y  a2         ε b2 ε
S II = H(ε) = S II(B |A)                    I II = 0 = I II(A:B)
---------------------------------------------------------------------------------------------------------------------

y

y y

    x  a1            b1         1−ε          (NBC) 
             1−y         

               B → A
      1−

1−x  a2        b2 ε
S II = H( y) = S II(A|B)                                I II = 0 = I I(B:A)

Fig. 1 The A → B binary channels defined by the conditional probability matrix d ≡ P(B|A) =
{P(b j |ai ) = P(ai , b j )/P(ai )}: symmetric (SBC, Panel a) and non-symmetric (NBC, Panel c), and their
conditional entropy (IT-covalency) and mutual information (IT-ionicity) descriptors, reported at the bot-
tom of each diagram. In Panels b and d the corresponding reverse B → A channels are defined, which
reproduce the input and output probabilities of their forward analogs. The conditional probabilities of the
reverse channel, drev. ≡ P(A|B) = {P(ai |b j ) = P(ai , b j )/P(b j )}, are derived from the joint probabil-

ities P(ai , b j ) implied by the forward channel: P(ai , b j ) = P(ai )P(b j |ai ). The vanishing I II index in
both NBC channels reflects the statistical independence of the input and output probabilities. It also shows
that the flow of information in these information systems is purely IT-covalent, while SBC gives rise to a
generally non-vanishing IT-ionic component

π -electron systems of alternant hydrocarbons and/or their fragments, due to the known
equalization of the carbon π -electron densities in this approximation.

The average-noise (IT-covalency) in the molecular channel is measured by the con-
ditional entropy [4] of the probabilities B = {p j = P(b j )} for the molecular “output”
events {b j }, given the probabilities A = {pi = P(ai )} of the molecular “input” events
{ai }, both determined by the system ground-state one-electron probabilities p = A = B
[5,18–25],
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S(B|A) = −
∑

i

∑
j

Pi, j log d( j |i) = S(A|B) ≡ S, (2)

equal to the conditional entropy S(A|B), of the molecular input A given the molecular
output B, since P = PT. The complementary index of the IT-ionicity is given by the
mutual information in the promolecular input probabilities A0 = p0 = {p0

i }, for the
valence electrons of the disconnected (separate, non-bonded) free-atomic fragments,
and the molecular output distribution p:

I (A0 : B) =
∑

i

∑
j

Pi, j log[Pi, j/(p0
i p j )] =

∑
i

∑
j

Pi, j log[d(i | j)/p0
i ]

= H(p0) − S(A|B) ≡ I, (3)

where the Shannon [2] entropy of the promolecular input A0

H(p0) = −
∑

i
p0

i logp0
i . (4)

Together these two overall bond components give rise to the total IT-index of all bonds
in then system:

N (A0;B) = I (A0 : B) + S(A|B) = H(p0) = H(A0) ≡ N . (5)

Illustrative examples of the binary information systems are given in Fig. 1, where
the corresponding conditional entropy (IT-covalency) and mutual information (IT-
ionicity) data are also reported.

It should be observed that the amount of information (3) also measures the two-
electron information-distance �S(P|P0) (Eq. 1), between the molecular two-electron
probabilities P, of the dependent (statistically correlated) two-electron events in atomic
resolution, and the reference distribution P0 = {P0

i, j = p0
i p j } characterizing the inde-

pendent (statistically uncorrelated) atomic events in the molecule and its promolecular
reference, respectively.

It is natural to expect that the two electronic structures of a given molecular system,
which generate close values of the overall IT-entropy/information descriptors of their
respective information channels, i.e., comparable values of the overall IT covalen-
cy and ionicity, should be on average chemically similar, as reflecting a comparable
number of all chemical bonds and their similar composition. Accordingly, substantial
differences in these global bond-indicators should imply marked differences in chem-
ical behaviour and/or geometric structures of the systems compared. For example,
the total predictions [5] from the communication theory of the overall π -bond mul-
tiplicities N = 2.585 and N = 3.000 for the π -electron systems in benzene and
cyclohexatriene, respectively, both of practically pure-covalent character, reflect dif-
ferent overall (covalent) multiplicity of π -bonds in both systems. Its diminished value
in the aromatic system, in accordance with the contemporary views on the relative
roles and competition between the σ and π bonds in benzene [42], is responsible for
all important changes in the geometric structure and chemical reactivity of both these
molecules.
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One should realize, however, severe limitations of such a crude, global similarity
criteria, of the minimum deviations between the overall bond components of Eqs. 2
and 3 for the information channels of systems I and II,

min(SI − SII)2 and min(I I − I II)2. (6)

They may still admit a notable difference in the local distribution of bonds, which
in turn generally imply different geometric structures and reactivity patterns of the
compared molecular systems.

Another question, which should be also addressed at this point, is how effective
are these global principles in enforcing a similarity between the two communication
systems, when one (fixed) system is treated as the reference and the other (trial, test)
system is modified variationally to satisfy the above minimum principles. We shall
examine this “inverse” issue in the illustrative problem of comparing two binary sys-
tems shown in Fig. 1, both involving two events in their respective inputs and outputs.
In Panels a and b of the figure the Symmetric Binary Channels (SBC) in the forward and
reverse directions, respectively, are summarized for the common set of the input/outut
probabilities defined in Panel a. Panels c and d of the figure represent the corresponding
Non-symmetric Binary Chanels (NBC). As witnessed by the reported mutual infor-
mation index I I = H(z)− H(ω), where H(ξ) = −ξ logξ −(1−ξ) log(1−ξ), stands
for the binary entropy function, 0 ≤ ξ ≤ 1, the mutually dependent input and output
probabilities of SBC give rise to a generally non-vanishing amount of information
flowing through this communication system. In the NBC case this index identically
vanishes due to the statistical independence of the probability vectors A and B in these
information systems, I II = 0, thus signifying a total IT-covalent (noise) dissipation
of the initial (input) information.

Let us now regard the SBC forward channel (Fig. 1a) as the model reference system
I with its NBC analog (Fig. 1c) then providing a variationally modified test channel II.
Therefore, the crossover probability ω of the reference network plays a role of the fixed
parameter, while the optimum probability ε determining the trial communications is
to be determined from the variational principles of Eq. 6. Our goal is to check, whether
applying these information-similarity criteria gives rise to the optimum trial system
II = I. The Euler equation for this unknown, which results from the least deviation
of conditional entropies [in natural units (nats), when log = ln] of these two systems
reads:

∂[H(ω) − H(ε)]2}
∂ε

= 0 ⇒ [H(ε) − H(ω)] ln

(
1 − ε

ε

)
= 0. (7)

It is satisfied, when at least one of these two factors vanishes: H(ε) = H(ω), i.e.,
ε = (ω, 1 − ω), or 1 − ε = ε, and hence ε = 1/2. The second solution demonstrates,
that the covalent-similarity criterion correctly identifies the symmetric limit of NBC
as one of the systems least deviating from the assumed SBC reference.

The remaining optimum NBC networks, however, which exhibit the same condi-
tional entropy content as the SBC channel, are seen to be generally different from
the assumed reference. The elements of each row in their conditional probability
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    x  a1       1/2 b1          1/2          a) SBC(ω  = ½) 
1/2

            S I = N I = 1     I I = 0                 
1/2

1−x  a2      1/2 b2 1/2

---------------------------------------------------------------------------------------------------------------------

1  a1    1−ω b1          1−ω          b) SBC(ω  = z)
ω

S I = N I = H(ω)    I I = 0

            b2 ω

---------------------------------------------------------------------------------------------------------------------

    y  a1    1−ω b1          1−ω          c) NBC(ε = ω)
ω

                     S II = N II  = H(ω) I II = 0
                        1−ω
1−y  a2        ω b2 ω

Fig. 2 Specific symmetric and non-symmetric binary channels representing optimum solutions of the
global information-similarity criteria

matrices are permuted compared to the SBC matrix. One further observes, that these
solutions do admit the identity of the trial and reference information systems. More
specifically, Eq. 7 remains fulfilled, when both factors in the Euler equation vanish
simultaneously: ε = ω = 1/2. This solution indeed corresponds to the symmetric
communication system, NBC(ε = 1/2) = SBC(ω = 1/2) (Fig. 2a), of the maximum
IT-covalency SI = SII = 1 and the vanishing IT-ionicity. In the communication the-
ory such network represents the symmetric, purely covalent bond, e.g., the σ -bond in
hydrogen molecule or the π -bond in ethylene [5,18–22].

A similar conclusion follows from the second criterion of Eq. 6, of the least devia-
tion between the IT-ionicities of two systems. Since the mutual information descriptor
of the NBC channel identically vanishes one now selects this communication network
as the reference and searches for the optimum SBC exhibiting the closest information
ionicity. The corresponding Euler equation,

∂[H(z) − H(ω)]2

∂ω
= 0 ⇒ [H(ω) − H(z)] ln

(
1 − ω

ω

)
= 0, (8)

again gives ω = (z, 1 − z) or ω = 1/2. As we have already observed above, the
SBC(ω = 1/2) indeed gives rise to I I = I II = 0, while the first solution ω = z implies
x = 1, so that only one input is used in sending the signals throughout the SBC
(Fig. 2b). Such non-symmetric use of SBC also generates the vanishing IT ionicity, as
in the reference NBC system. Finally, the vanishing of the two factors in Eq. 8, when
ω = z = 1/2, again leads to the purely covalent SBC, which may correspond to the
symmetric σ -bond in H2 or π -bond in C2H4.
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It follows from the conservation of the overall bond order in communication theory
(see Eq. 5), that for the fixed input probabilities only one bond component is indepen-
dent. Therefore, the trial channel exhibiting the maximum closeness in the IT-covalent
component to the reference system must also minimize the deviation in its IT-ionic
component. It should be stressed that the requirement that both variational principles
of Eq. 6 be simultaneously satisfied does not eliminate multiple solutions. For exam-
ple, it follows from Eqs. 7 and 8 that ε = ω = z again implies a non-symmetric use
of SBC, for x = 1 (Fig. 2b), which produces the same output probabilities as in the
associated NBC of Fig. 2c.

Now, to summarize this short demonstration, we observe that the first similarity
criterion of Eq. 6 gives rise to multiple solutions, which contain the identity case.
Thus, although not uniquely identifying the full agreement between these two model
communication networks, this criterion does not miss this perfect matching case either.

We finally observe that the simultaneous observance of the both variational princi-
ples of Eq. 6 also implies the least deviations in the overall bond index of Eq. 5:

min(N I − N II)2, (9)

where N I = SI + I I and N II = SII + I II.

3 Implications from the combined information systems

Let us next examine possible implications for the molecular similarity issue from the
complex information systems, which include the two compared communication net-
works as constituent parts. For example, one may envisage a use of the sequential
cascade or the parallel arrangement of these two channels, which separately represent
the probability scattering in the two molecules or their fragments. Such combined
networks have recently been discussed in the context of the intermediate orbital trans-
formations [30] and the local resolution of electron probabilities [31].

3.1 Parallel arrangement

First, let us briefly summarize the combination rules for the conditional-entropy and
mutual-information descriptors of the complex system involving the parallel arrange-
ment of two separate channels of Fig. 3a, which is shown in Fig. 3b [30]. The dis-
connected sub-channels I and II, which represent the compared molecules/fragments,
are generated by the intra-subsystem conditional probabilities dI = PI(B

I|AI) and
dII = PII(B

II|AII), respectively. They are subsequently combined in the parallel man-
ner into a single complex channel defined by the effective conditional probabilities
dIII = PIII(B|A), with the input group probabilities of two subsystems in the com-
bined channel, P G = (PI, PII) = (λ, 1 − λ), reflecting an overall participation of
each subsystem in this two-lane complex. It should be stressed, that in the parallel
arrangement the numbers of inputs/outputs of the compared channels can differ from
one another.
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A

a) b)
I →→ PI(B

I | AI) →  BI λ AI → P I(B
I | AI) → λ B I

AII →P II(B
II | AII) → BII      (1−λ)AII → P II(B II | AII) → (1− λ ) B II

A(λ) → PIII (B | A) → B(λ )

Fig. 3 Two compared (disconnected) information channels (Panel a) and their parallel arrangement (Panel
b). Separate channels are characterized by the conditional probabilities PI(B

I|AI) and PII(B
II|AII), respec-

tively, while the complex information system is described by the probability-scattering matrix PIII(B|A).
The inputs(outputs) of the parallel system combine those of separate subsystems. The normalized input
probabilities AI = {AI

i } and AII = {AII
j } of the separate sub-channels represent the conditional (intra-

group) probabilities in the combined system: {AI
i ≡ P(i |I)} and {AII

j ≡ P( j |II)}, exhibiting the relevant

normalizations:
∑

i P(i |I) = ∑
j P( j |II) = 1. The absolute values of these probabilities in the complex

system are obtained by multiplying these conditional probabilities by the appropriate group probability
of the component channel in the parallel complex as a whole: A(λ) = [{Ai = PI P(i |I) = λAI

i }, {A j =
PII P( j |II) = (1−λ)AII

j }. They give rise to the parallel channel output probabilities B(λ) = A(λ)PIII(B|A)

The normalized input and output probabilities of such parallel channel thus read:

A(λ) = [λAI, (1 − λ)AII], B(λ) = [λAIPI(B
I|AI), (1 − λ)AIIPII(B

II|AII)]
= [λBI, (1 − λ)BII]. (10)

Therefore, the conditional probabilities PIII(B|A) of the combined channel, which
transform A(λ) into B(λ),

A(λ)PIII(B|A) = B(λ), (11)

assume the block-diagonal form:

PIII(B |A ) =
[

PI(B
I
∣∣AI ) 0

0 PII(B
II

∣∣AII )

]
. (12)

The grouping rules for the IT-covalent and IT-ionic bond components in such com-
plex information system are in the spirit of those for the Shannon entropy of input-
probabilities:

H(A(λ)) = −
∑

α=I,II

∑

k∈α

Pα P(k |α ) log[Pα P(k|α )]

= −
∑

α=I,II

Pα log Pα −
∑

α=I,II

Pα

[
∑

k∈α

P(k|α ) log P(k|α )

]

≡ H(P G) + [λH(AI) + (1 − λ)H(AII)]. (13)

Here, the first term H(P G) = H(λ) represents the group-uncertainty, while the
rest measures the P G -weighted mean value of the intra-group entropies for each

123



616 J Math Chem (2009) 45:607–626

separate subsystem. The combination formulas for the system conditional entropy
and mutual-information similarly read:

S(B(λ)|A(λ)) = −
∑

α=I,II

Pα(λ)
∑

k,l∈α

P(k|α )Pα(l|k ) log Pα(l|k )

=
∑

α=I,II

Pα(λ)S(Bα
∣∣Aα ) ≡ S(λ). (14)

I (A(λ) : B(λ)) =
∑

α=I,II

Pα(λ)
∑

k,l∈α

P(k|α )Pα(l|k ) log
Pα(l|k )

Pα(λ)P(l|α )

=
∑

α=I,II

Pα(λ)I (Aα : Bα) + H(λ) ≡ I (λ). (15)

Hence the grouping rule for the total bond index:

N (A(λ);B(λ)) = S(B(λ)|A(λ)) + I (A(λ) : B(λ))

= H(P G(λ)) +
∑

α=I,II

Pα(λ)[S(Bα
∣∣Aα ) + I (Aα : Bα)]

≡ H(λ) +
∑

α=I,II

Pα(λ)N (Aα;Bα) ≡ N (λ). (16)

Expressing these bond-indices in terms of the separate subsystem quantities,
S(Bα|Aα) = Sα , I (Aα : Bα) = I α and N (Aα;Bα) = Nα , α = I, II, then gives the
following functions of the input parameter λ :

S(λ) = SII + λ(SI − SII), I (λ) = H(λ) + λI I + (1 − λ)I II,

N (λ) = H(λ) + λN I + (1 − λ)N II. (17)

The average noise (IT-covalency) of the parallel channel of Fig. 3b is thus linearly
dependent upon the input parameter λ. Therefore, its derivative

∂S(λ)

∂λ
= SI − SII, (18)

vanishes only when the conditional entropies of the two compared molecular infor-
mation systems are equal.

The related condition for the optimum value of the input parameter λ = λmax, for
which the mutual information index (in nats) reaches the maximum value, reads:

∂ I (λ)

∂λ

∣∣∣∣
λmax

= I I − I II + ∂ H(λ)

∂λ

∣∣∣∣
λmax

= I I − I II + ln

(
1 − λmax

λmax

)
= 0, (19)

and hence,
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λmax = [1 + exp(I II − I I)]−1 ≡ (1 + exp�I )−1. (20)

Therefore, when manipulating the input signal in the parallel information complex
build from the two compared information systems, one reaches the maximum mutual
information for the input probabilities P max

G = (λmax , 1 − λmax ). The corresponding
value I (λmax ) then marks the parallel channel information capacity [4,5] (in nats):

C(parallel) = I (λmax) = ln(1 + exp�I ) − �I [1 + exp(−�I )]−1, (21)

reaching the maximum value ln2 [nats] = 1 [bit] for �I = 0. It follows from this opti-
mum solution, that for the equal IT-ionicities of the compared information systems,
when �I = 0, the parallel complex gives rise to equal input-shares of both subsys-
tems in the whole system: λmax (�I = 0) = 1/2. Moreover, λmax (�I < 0) > 1/2 and
λmax (�I > 0) < 1/2, signify a non-symmetric use of the parallel system.

Therefore, for a series of trial channels II the degree of their IT-ionic similarity to
the fixed reference communication system I can be measured by a magnitude of the
deviation between the current value of λmax from the capacity value for the perfect
match, λmax = 1/2, thus giving rise to the following variational principle:

min(λmax − 1/2)2. (22)

One similarly derives the optimum value of λ = λ∗, which maximizes the total IT
bond-multiplicity N (λ) (Eq. 17),

λ∗ = [1 + exp(N II − N I)]−1 ≡ (1 + exp�N )−1. (23)

Again, for equal total IT bond-orders in the compared systems, λ∗(�N = 0) = 1/2,
and the increasing deviation of this input parameter for the trial system II and the fixed
reference I signifies a decreasing resemblance between these channels in terms of the
total bond index.

3.2 Sequential arrangement

In the consecutive information-cascade [4,30] of the two compared information sys-
tems, trial and reference, when the outputs of the elementary channel I constitute the
inputs of channel II,

A → PI(B|A) → B → PII(C|B) → C, (24)

the role of the preceding step in the series is limited to shaping the input proba-
bilities of the next step. This feature of the sequential information system is illus-
trated in Fig. 4 for the simplest case of two sub-channels PI(B|A) ≡ {PI( j |i)} and
PII(C|B) ≡ {PII(k| j)} in the series. Here, A = {Ai }, B = {B j }, and C = {Ck}
group the input, intermediate, and output probabilities, respectively. Therefore, the
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(Aa)

b)

c)

d)

)            HH (B)             H(C)

 I(A:B⏐ C)                          S(C⏐B)

I(A:B) SS(A⏐B)       

S

S

(B⏐ A)

(A⏐C)            I (A:C) = I (A:B:C ) S(C⏐A)

(A⏐B,C ) I(A:B⏐C)      S(B⏐A,C)

I(A:B:C)

I(A:C⏐B)

  S(C⏐A,B)                     I(B:C⏐A)

Fig. 4 Dependent probability distributions A = {Ai = P(ai )}, B = {B j = P(b j )}, and C = {Ck =
P(ck )} of the two-step sequential information channel, A → PI(B|A) → B → PII(C|B) → C, which
consists of the consecutive arrangement of two sub-channels PI(B|A) and PII(C|B) giving rise to the
resultant channel PIII(C|A) = PI(B|A)PII(C|A). These 3 channels give rise to the overlapping Shannon
entropies H(A), H(B), and H(C) of Panels (a–c), which depict their mutual arrangement for the specific
case of the sequential arrangement of the two sub-channels compared, when the output of the first stage
constitutes the input of the second stage in the series. Therefore, a dependence C(A) = C(B(A)), as
schematically shown in Panel a. This diagram shows that the overlap region between H(A) and H(C),
representing the mutual information I (A:C) = I (A:B:C) + I (A:C|B) (Panels a, c), is completely con-
tained in I (A:B) (Panels a, b), thus implying the vanishing mutual information in A and C, conditional on
B:I (A:C|B) = 0. In other words, for the sequential arrangement of two subchannels the mutual information
in the peripheral probabilities is equal to that in three probability distributions: I (A:C) = I (A:B:C). This
is not the case for general dependencies between three probability vectors, which correspond to the mutual
arrangement of three subsystem entropies shown in Panel d. The diagram b and c show a gradual loss of
information (increase in entropy) at each step, as reflected by the difference between conditional-entropies
S(A|C) > S(A|B). It implies the associated lowering of the amount of information flowing through the
cascade, measured by the corresponding mutual-information quantities, I (A:B) > I (A:C), given by the
fractions of the initial amount of information H(A) at the cascade input
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effective output probabilities of the cascade as a whole is determined by the interme-
diate set of probabilities B = API(B|A) of the common sets of “events” {b j }, which
determine both the output of I and the input of II:

C = BPII(C|B) = A[PI(B|A)PII(C|B)] ≡ APIII(C|A), (25)

with the resultant conditional probabilities PIII(C|A) ≡ {PIII(k|i)} of communications
between the inputs {ai } of I and the outputs {c j } of II.

In Fig. 4 the mutual dependence between probability vectors A, B, and C is reflected
by the overlap between the corresponding circles representing the associated Shannon
entropies H(A), H(B) and H(C). Their mutual arrangement in the consecutive cas-
cade is depicted in Panel a, while Panel d illustrates the conditional-entropy (S) and
mutual-information (I ) quantities, which appear in a general case of three dependent
probability distributions [4]. In the sequential cascade the mutual-information I (A:C),
reflected by the overlap between H(A) and H(C), is totally contained in the mutual
information I (A:B), represented by the overlap between H(A) and H(B), since the
whole dependence of C on A is due to B.

Therefore, the mutual information in the peripheral distributions must be equal to
the mutual information in all three probability vectors: I (A :C) = I (A :B :C) ≤
I (A:B) < H(A). The preceding inequalities express a successive loss of information
due to consecutive steps of the cascade. This effect can be alternatively represented
by inequalities between the missing amounts of information at each step provided
by the associated conditional-entropy indices, which are also shown in the figure:
S(A|C) = H(A) − I (A:C) > S(A|B) = H(A) − I (A:B), where S(A|C) measures
the information loss for the cascade as a whole, while S(A|B) reflects the informa-
tion lost in its first stage. These inequalities follow from the elementary information
quantities for a general inter-dependencies between the three probability distributions
of Fig. 4d:

S(A|C) = S(A|B) + I (A:B|C) − I (A:C|B) = S(A|B) + I (A:B|C), (26)

since for the sequential arrangement of the two compared sub-channels the explicit
dependence between peripheral probabilities, which does not result from their depen-
dence on B, I (A:C|B), must identically vanish. The preceding equation expresses the
so called stage-additivity of the information loss (conditional entropy) in the sequen-
tial cascade [30]. Thus, the mutual information I (A:B|C), reflecting a dependence of
A on B, which cannot be attributed to A[C(B)], represents the extra loss of the initial
information in the second sub-channel, I (A:B).

As we have already emphasized in Section 2, the overall conditional entropy
(S, IT-covalency) and mutual-information (I , IT-ionicity) descriptors of a given com-
munication channel describe how the channel input information of Eq. 5 is partitioned
at its output into the dissipated and surviving parts of the initial amount of information
(N , total bond index). Therefore, in terms of these descriptors of information chan-
nels the compared molecular systems are globally “similar” when these proportions
are comparable,
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I(A:B⏐C)     I(B:C⏐A) I(A:C)

a)  Hard-Hard (H-H):

 S(A⏐B) S(C⏐B

I(A:B⏐C) ≅ I(A:B)     I(B:C)

b)  Soft-Soft (S-S): I(A:C ) ≅ 0

S(A⏐B) S(C⏐B)

 I(A:B⏐C)           I(A:C)

)

)

c)  Hard-Soft (H-S):

S(A⏐B) S(C B

I(A:B⏐C)             I(B:C⏐A)        I(A:C)

d)  Soft-Hard (S-H):

S(A⏐B) S(C⏐B)

(H A)                I(A:B) = I(A:C)             

     H(B) = H(C) = I(B:C)
e) Idempotent:

       S(A⏐B) = S(A⏐C ) S(C⏐A) = S(B⏐A)

Fig. 5 Qualitative diagrams of possible arrangements of the entropy circles in a sequential cascade of two
elementary molecular channels: IT-“similar” (Panels a, b) and IT-“dissimilar” (Panels c, d) communication
systems. The diagram of Panel e represents the sequential cascade involving a repetition of the idempotent
channel, d ≡ P(B|A) = P(C|B), when P(C|A) = d2 = d

S(A|B)/I (A:B) ≡ SI/I I ≈ S(B|C)/I (B:C) ≡ SII/I II. (27)

Accordingly, the two systems would be regarded as “dissimilar”, when these propor-
tions are notably different, e.g., SI/I I � SII/I II. In qualitative diagrams of Fig. 5 we
have represented possible similarity (Panels a, b) and dissimilarity (Panels c, d) cases
in the sequential cascades, with the noise/information proportions of the compared
networks reflected by the corresponding S and I areas in the plots.

One should distinguish the following two general categories of molecular commu-
nication systems, as characterized by the ratio of Eq. 27. The strongly ionic [IT-“hard”
(H), to a large extent deterministic] channels, in which Sα < I α , preserve a substantial
fraction of their initial information content and exhibit a high degree of localization
the system valence electrons. The other class of systems represents a strongly covalent
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[IT-“soft” (S), strongly scattering] channels, with a dominating electron-delocaliza-
tion (“noise”) component, Sα > I α , and hence only a small amount of the initial
information content surviving in the channel output probabilities. Examples of such
general communication networks are schematically depicted in Fig. 5, where alter-
native combinations of such elementary channels in the sequence are qualitatively
examined. In the last panel of the figure the special case of a repetition of the same
(idempotent) information system in the cascade is shown. This channel corresponds
to the idempotent conditional-probability matrix d ≡ P(B|A) = P(C|B) : d2 = d,
so that there is no additional amount of noise created (information lost) in the second
stage of such a repetitive sequential system, compared to that already generated in the
first stage.

The H–H (a) and S–S (b) panels in the figure deal with two cases of the infor-
mation-similarity, while its H–S (c) and S–H (d) panels focus on two cases of the
information-dissimilarity between the two compared communication channels. It fol-
lows from the figure (see also Table 1) that only the sequence of two ionic (H) channels,
or a repetition of a single (ionic) idempotent information system (Panel e), can pro-
duce a substantial amount of the cascade mutual information. Indeed, the sequential
cascade of two similar, strongly ionic (“hard”) species, with S(A|B) < I (A:B) and
S(C|B) < I (B:C), conserves in C a high proportion of the initial information con-
tent H(A), as reflected by the sizable amount of the mutual information (ionicity)
area I (A :C) ≡ I III and a medium-size of the complementary (noise, covalency)
areas S(A|C) = H(A) − I III and S(C|A) = H(C) − I III. The other S–S case of the
channel similarity (Panel b), with S(A|B) > I (A:B) and S(C|B) > I (B:C), gives
rise to a practically vanishing amount of information flowing through the cascade [no
overlap between H(A) and H(C) circles], and a large conditional entropies S(A|B)

and S(C|B). This conclusion also applies to the repetition of a soft (non-idempo-
tent) molecular channel. All remaining mixed (dissimilarity) combinations of H and S
elementary channels also generate in the sequential arrangement almost a pure-cova-
lent effective information dissipation of the cascade. The least amount of the cascade
initial information is expected to be preserved at the output of the sequence of two
strongly covalent (IT-soft) channels of Panel b, when C remains practically indepen-
dent of A. Panels c and d of Fig. 5 summarize the two information-dissimilarity cases.
A reference to Fig. 5c indicates, that information system I is strongly ionic (electron-
localized), as reflected by a relatively high value of the I (A:B) > S(A|B) area, while
the second channel exhibits the dominance of the communication noise, i.e., the infor-
mation dissipation due to electron delocalization, over the information-preservation
due to the electron localization: noise, I (C :B) < S(C|B). As qualitatively argued
in Fig. 5, the information similarity of the two ionic networks (Panel a) generates a
relatively high value of the amount of information I III flowing through the cascade as
a whole, and hence a relatively low value of the complementary parts I (A:B|C) of
I I = I III + I (A:B|C) and I (B :C|A) of I II = I III + I (B :C|A), compared to the
information dissimilarity cases of Panels c and d. The H–S pair of Panel c is seen to
give rise to generally low value of I III and hence to high values of the complementary
quantities I cond.

1 = I (A:B|C) or S(C|A) = H(A) − I III. Accordingly, the S–H pair
of Panel d is expected to generate generally low values of both I III and I (A:B|C), and
hence high values of the complementary quantities I cond.

2 = I (B:C|A) and S(C|A).
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Table 1 Summary of qualitative trends in magnitudes of the entropy/information indices of sequential com-
munication systems consisting of two compared elementary channels of varying degree of the information
ionicity/covalency (see Panels a–d of Fig. 5)

Sequential cascade (Fig. 5) Bond indices

I (A:C) S(C|A) I (A:B|C) I (B:C|A) S(A|B) S(C|B)

H–H Medium Medium Small Small Small Small
S–S ∼= 0 ∼= S(C) ∼= I (A:B) ∼= I (B:C) Large Large
H–S Small Large Large Small Small Large
S–H Small Large Small Large Large Small

In Table 1 we have summarized all these qualitative predictions, which should help
establishing the type of information/entropy matching of the elementary communica-
tion systems of the compared molecular systems in the sequential probability scattering
network. It follows from these qualitative predictions that each case of the subsystem
similarity (H–H or S–S) or dissimilarity (H–S or S–H) has a distinct combination of
sizes of these complementary entropy/information bond-indices. Within a given class
identified by such a qualitative IT- “fingerprint” the predicted values of the cascade
amount of information I (A:C) reflect a relative similarity in the compared series of
compounds. In other words, the higher the value of I III [lower the value of I (A:B|C)]
the more similar are the compared information systems. The other conditional mutual-
information index, I (B:C|A) = I II − I III ≡ I cond.

2 can alternatively be used as the
similarity indicator.

In the next section we shall apply these IT criteria within the Hückel theory, to
compare the π -electron systems of three simple alternant hydrocarbons [5], allyl,
butadiene, and benzene, which exhibit a varying degree of the bond delocalization,
against their selected (hypothetical) VB-structures, which involve an increased elec-
tron localization, i.e., a more emphasized bond alternation, compared to the molecular
information channel.

4 Illustrative numerical applications

The representative molecular communication systems of π -electrons in ethylene, allyl,
butadiene, and benzene in the Hückel approximation have been reported elsewhere
(see, e.g., [5]). These elementary channels also provide the building blocks for gen-
erating the model information channels of the hypothetical VB-structures of larger
systems, the similarity of which to the corresponding molecular channels will be
examined in terms of the conditional-entropy (S) and mutual-information (I ) indices
of the associated sequential cascades of Eq. 24. A variety of the predicted IT bond
indices is summarized in Table 2. Both positions of the molecular channels in the cas-
cade have been tested. As explicitly indicated in the table, the information systems of
allyl and butadiene have been placed as the first stages in their respective cascades,
while the benzene communication network follows the model channels for the current
VB structure X = (X1|X2| . . .), where X = {Xα} groups the mutually decoupled
(closed, non-bonded) molecular fragments of the molecule. The corresponding VB

123



J Math Chem (2009) 45:607–626 623

Table 2 Conditional-entropy (S) and mutual-information (I ) indices (in bits) of the sequential information
cascades (III, casc.) consisting of the communication channels of the molecular (mol.) π -electron systems
in selected alternant hydrocarbons (Hückel theory) and model channels of their alternative VB-structures
(VB). The extra (thin) lines in VB-structures separate the mutually closed (non-bonded) fragments, thus
delineating the extent of their allowed electron delocalization. The conditional mutual-information indices
I cond.
1 = I (A:B|C) = I (A:B) − I (A:C) = I I − I casc. and I cond.

2 = I (B:C|A) = I (B:C) − I (A:C) =
I II − I casc. are reported in the two last columns of the table

______________________________________________________________________________

SVB IVB Smol. Imol. Scasc. Icasc.   I1
cond. I2

cond.

    VB-structure
______________________________________________________________________________
Allyl (I):  →allyl→VB→

(ethylene⏐carbon)    0.67  0.92  1.52  0.06  1.55  0.04  0.023  0.880      

Butadiene (I): →butadiene→VB→

    (ethylene⏐ethylene) 1.00  1.00  1.94  0.06  1.95  0.05  0.004  0.948 

    (allyl⏐carbon)         1.14  0.86  1.94  0.06  1.98  0.02  0.036  0.980 

Benzene (II): →VB→benzene→
       cyclohexatriene = 
       (ethylene⏐ethylene 

⏐ethylene)    1.00  1.59  2.55  0.03  2.56  0.02  1.563  0.012 

       (allyl⏐allyl)   1.52  1.06  2.55  0.03  2.57  0.01  1.040  0.021 

       (butadiene⏐ethylene)  1.63  0.96  2.55  0.03  2.57  0.01  1.606  0.023 

______________________________________________________________________________

Compared systems: Bond indices

Molecule       Cascade,   

channels, defined by their conditional probability matrix dVB = {dαδα,β}, have been
constructed using the communication networks of individual subsystems X, defined
by the respective subsystem conditional probabilities {dα}. For the alternant hydro-
carbons all probability vectors combine equal molecular/promolecular probabilities
for each carbon atom, A = A0 = B = C = {1/n}, where n stands for the number
of atoms in the π -electron system. This determines the overall bond index for each
elementary channel (Eq. 5): N I = SI + I I = N II = SII + I II = H(A0) = log2n.

We begin the discussion of these results by examining the IT bond indices for
individual molecular and VB channels. It follows from the table that, as intuitively
expected, the information channels of VB structures, in which the electron delocaliza-
tion is constrained relative to the associated molecular system, are characterized by
a distinctly higher IT-ionicity (lower IT-covalency), compared to the corresponding
molecular descriptors. The molecular data are seen to predict almost purely covalent
π -bonds between the system carbon atoms, while the increasing localization of bonds
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gives rise to their increasing IT-ionicity. For example, in the benzene VB-structures
the highest ionicity index corresponds to the cyclohexatriene structure, involving 3
localized bonds, i.e., the hypothetical ethylene subsystems, while the (allyl|allyl) and
(butadiene|ethylene) structures, which give rise to a similar bond composition, exhibit
a much lower ionicity contribution due to a partial delocalization of π -bonds already
accounted for.

Let us now focus on entries in Table 2, which report the cascade descriptors.
It follows from the table that all pairs of the information cascades including the
molecular and VB stages correspond to the mixed pairs of Figs. 5c, d, when there
is a marked difference between the ratios of Eq. 27 for the two systems compared.
This explains rather small values of the predicted cascade mutual information index
I casc. = I (A:C), which can be thus considered as valid similarity indicator within
a given class of cascades distinguished in Fig. 5: S–H [(allyl, butadiene)-VB] or H–S
(VB-benzene).

It should be realized at this point that there are two major factors determining
the similarity of these information systems: the symmetry of the trial VB structure
and the extend of the bond delocalization it allows. These factors often act in opposite
directions. For example, the (allyl|carbon) VB structure of butadiene involves a higher
level of the π -electron delocalization compared to the (ethylene|ethylene) case, which
increases its similarity to the butadiene π -system. However, such more delocalized
structure breaks the symmetry of the π -electron system, which decreases its resem-
blance to the molecule. The same competition between delocalization and symmetry
aspect of the electronic structure is involved in the case of the (butadiene|ethylene)
structure of benzene. The I casc. results for the sequential systems involving benzene
show that the symmetry constitutes the decisive factor: the cyclohexatriene structure,
which preserves the symmetry the most, gives the highest value of I casc., in compar-
ison to the remaining structures involving a higher degree of the bond delocalization
but a diminished symmetry. It is also reflected by a lower value of the complementary

Table 3 Illustrative examples of the molecular quadratic cascades, of two identical stages, representing
the H–H (Fig. 2a), S–S (Fig. 2b) and idempotent (Fig. 2d) stages of information scattering and their com-
plementary entropy/information descriptors (in bits)

Type Stage Bond indices:

I I = I (A:B), SI = S(B|A), I III = I (A:C) SIII = S(C|A)

I II = I (B:C) SII = S(C|B)

H–H 1.061 1.524 1.003 1.582

S–S allyl 0.061 1.524 0.003 1.582

Idempotent 0.918 0.667 0.918 0.667

1.585 1.000 1.585 1.000
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index I cond.
2 . The other conditional mutual-information index I cond.

1 is not relevant for
such comparisons, due to dramatically different values of I I = I VB for the trial VB
structures. The same conclusion follows from an inspection of the butadiene results:
the symmetry-preserving (ethylene|ethylene) structure gives the highest I casc. (low-
est I cond.

1 ) index, despite containing the least degree of delocalization. From what we
know about the bond localization in butadiene, this structure is indeed the closest to
the relatively localized π -bond pattern in this molecule [5].

Illustrative examples of the model H–H, S–S and idempotent cascades are reported
in Table 3. These quadratic cascades involve identical stages I and II, with the idem-
potent channels being generated by the VB structures involving ethylene fragments
of allyl and benzene. These examples are seen to confirm the qualitative conjectures
of Fig. 2 and Table 1. For example, only the H–H and idempotent channels are seen
to preserve a sizable part of the cascade initial amount of information, while the S–S
combination gives a practically vanishing bond-ionicity, i.e., an almost pure bond-
covalency. Clearly, the same result of a very low magnitude of the cascade information
flow can be expected in the quadratic information systems involving the remaining
strongly covalent (S) π -channels of butadiene and benzene.
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E. Świtka, Phys. Chem. Chem. Phys. 4, 4952 (2002); R.F. Nalewajski, Use of fisher information in
quantum chemistry, Int. J. Quantum Chem. (K. Jankowski issue). (in press)

14. R.F. Nalewajski, E. Broniatowska, J. Phys. Chem. A 107, 6270 (2003); Int. J. Quantum Chem. 101,
349 (2005)

15. R.F. Nalewajski, A.M. Köster, S. Escalante, J. Phys. Chem. A 109, 10038 (2005)
16. R.F. Nalewajski, E. Broniatowska, Chem. Phys. Lett. 376, 33 (2003)
17. R.F. Nalewajski, J. Phys. Chem. A 107, 3792 (2003); Ann. Phys. (Leipzig) 13, 201 (2004); Mol. Phys.

104, 255 (2006)
18. R.F. Nalewajski, J. Phys. Chem. A 104, 11940 (2000)
19. R.F. Nalewajski, Mol. Phys. 102, 531, 547 (2004)
20. R.F. Nalewajski, Mol. Phys. 103, 451 (2005)
21. R.F. Nalewajski, Mol. Phys. 104, 365, 493, 1977, 2533 (2006)

123



626 J Math Chem (2009) 45:607–626

22. R.F. Nalewajski, Struct. Chem. 15, 391 (2004)
23. R.F. Nalewajski, J. Math. Chem. 38, 43 (2005)
24. R.F. Nalewajski, Theoret. Chem. Acc. 114, 4 (2005)
25. R.F. Nalewajski, K. Jug, in Reviews of Modern Quantum Chemistry: A Celebration of the Contributions

of Robert G. Parr, vol. I, ed. by K.D. Sen (World Scientific, Singapore, 2002), p. 148
26. R.F. Nalewajski, Chem. Phys. Lett. 386, 265 (2004)
27. R.F. Nalewajski, Mol. Phys. 104, 2533, 3339 (2006)
28. R.F. Nalewajski, J. Phys. Chem. A 111, 4855 (2007)
29. R.F. Nalewajski, Entropic bond indices from molecular information channels in orbital resolution:

ground-state systems. J. Math. Chem. (in press)
30. R.F. Nalewajski, Chemical bonds through probability scattering: information channels for intermedi-

ate-orbital stages. J. Math. Chem. (in press)
31. R.F. Nalewajski, Entropic bond-descriptors of molecular information systems in local resolution.

J. Math. Chem. (in press)
32. K.A. Wiberg, Tetrahedron 24, 1083 (1968)
33. M.S. Gopinathan, K. Jug, Theor. Chim. Acta (Berl.) 63, 497, 511 (1983); see also: K. Jug, M.S. Gopi-

nathan, in Theoretical Models of Chemical Bonding, vol. II, ed. by Z.B. Maksić (Springer, Heidelberg,
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